
Signal Processing Toolbox™ 6
Getting Started Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Signal Processing Toolbox™ Getting Started Guide

© COPYRIGHT 2006–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2006 First printing New for Version 6.6 (Release 2006b)
March 2007 Online only Revised for Version 6.7 (Release 2007a)
September 2007 Online only Revised for Version 6.8 (Release 2007b)
March 2008 Online only Revised for Version 6.9 (Release 2008a)
October 2008 Online only Revised for Version 6.10 (Release 2008b)
March 2009 Online only Revised for Version 6.11 (Release 2009a)
September 2009 Online only Revised for Version 6.12 (Release 2009b)

Contents

Overview

1
Product Overview . 1-2
Product Summary . 1-2
Command-Line Functions and Objects 1-2
Graphical User Interfaces . 1-3
Supported Data Types . 1-3

Central Features . 1-4
Signal Processing Toolbox Functions 1-4
Signals and Systems . 1-4
Filter Design, Analysis, and Implementation 1-5
Linear System Transformations . 1-5
Windowing Functions . 1-5
Spectral Analysis . 1-5
Transforms . 1-5
Statistical Signal Processing . 1-5
Parametric Modeling . 1-6
Linear Prediction . 1-6
Multirate Signal Processing . 1-6
Waveform Generation . 1-6
Other Operations . 1-6

Interactive Tools . 1-7

Extensibility . 1-8
Expanding the Toolbox with M-Files 1-8
Expanding the Toolbox with Other Toolboxes 1-8

Finding More Information . 1-9

v

Basic Signal Processing Concepts

2
Representing Signals . 2-2
Numeric Arrays . 2-2
Vector Representation . 2-2

Waveform Generation: Time Vectors and Sinusoids . . . 2-4
Time Vectors . 2-4
Common Sequences: Unit Impulse, Unit Step, and Unit
Ramp . 2-5

Multichannel Signals . 2-5
Common Periodic Waveforms . 2-6
Common Aperiodic Waveforms . 2-7
The pulstran Function . 2-8
The Sinc Function . 2-9
The Dirichlet Function . 2-10

Working with Data . 2-12
Importing Data fromWithin the MATLAB Environment . . 2-12
Importing Data from Outside the MATLAB
Environment . 2-12

Converting Data into a MAT-File . 2-12
Exporting Data . 2-13
Data Precision . 2-13

Selected Bibliography . 2-14

Filter Design with Fdesign and Filterbuilder

3
Filter Design Process Overview . 3-2

Basic Filter Design Process . 3-4

Using Filterbuilder to Design a Filter 3-9

vi Contents

Filter Design with the FDATool GUI

4
Introduction . 4-2

Designing the Filter . 4-3

Analyzing the Filter . 4-8

Designing Additional Filters . 4-10

Viewing and Annotating the Filter 4-11
Viewing the Filter in FVTool . 4-11
Using FVTool for Annotation . 4-15

Exporting Filters from FDATool . 4-17
Filtering with dfilt . 4-18

Designing Filters using Command Line Functions 4-21

Where to Find More Information . 4-24

Spectral Analysis

5
Introduction . 5-2
Spectral Analysis Examples . 5-2
Spectral Estimators . 5-2
Spectral Analysis Algorithms . 5-2
Spectral Analysis Objects . 5-3

Creating a Spectral Analysis Object 5-4

Producing a PSD Estimate . 5-6

vii

Changing Spectral Analysis Object Property Values . . 5-8
Using the set command to Set Property Values 5-8
Using Options Objects to Set Property Values 5-11

Measuring Signal Power . 5-13

Where to Find More Information . 5-17

Index

viii Contents

1

Overview

• “Product Overview” on page 1-2

• “Central Features” on page 1-4

• “Interactive Tools” on page 1-7

• “Extensibility” on page 1-8

• “Finding More Information” on page 1-9

1 Overview

Product Overview

In this section...

“Product Summary” on page 1-2

“Command-Line Functions and Objects” on page 1-2

“Graphical User Interfaces” on page 1-3

“Supported Data Types” on page 1-3

Product Summary
Signal Processing Toolbox™ software is a collection of tools based on the
MATLAB® environment. The toolbox supports a wide range of signal
processing operations, from waveform generation to filter design and
implementation, parametric modeling, and spectral analysis. The toolbox
provides two categories of tools, command-line functions/objects and graphical
user interfaces:

Command-Line Functions and Objects
Command-line functions and objects are available in the following categories:

• Discrete-time filter design, analysis, and implementation

• Analog filter design, analysis, and implementation

• Linear system transformations

• Windowing functions

• Spectral analysis and cepstral analysis

• Transforms

• Statistical signal processing

• Parametric modeling

• Linear prediction

• Multirate signal processing

• Waveform generation

1-2

Product Overview

Note For information on objects, see Object-Oriented Programming.

Graphical User Interfaces
A suite of interactive graphical user interfaces are available for

• Filter design and analysis

• Window design and analysis

• Signal plotting and analysis, spectral analysis, and filtering

Supported Data Types
The Signal Processing Toolbox software supports only double-precision
inputs. If you input single-precision floating-point or integer data, you should
not expect to receive correct results, and in many cases, an error will occur.
The Filter Design Toolbox™ product, in conjunction with the Fixed-Point
Toolbox™ product, enables single-precision floating-point and fixed-point
support for filtering and filter design.

1-3

1 Overview

Central Features

In this section...

“Signal Processing Toolbox Functions” on page 1-4

“Signals and Systems” on page 1-4

“Filter Design, Analysis, and Implementation” on page 1-5

“Linear System Transformations” on page 1-5

“Windowing Functions” on page 1-5

“Spectral Analysis” on page 1-5

“Transforms” on page 1-5

“Statistical Signal Processing” on page 1-5

“Parametric Modeling” on page 1-6

“Linear Prediction” on page 1-6

“Multirate Signal Processing” on page 1-6

“Waveform Generation” on page 1-6

“Other Operations” on page 1-6

Signal Processing Toolbox Functions
Signal Processing Toolbox functions are algorithms, expressed mostly in
M-files, that implement a variety of signal processing tasks. These toolbox
functions are a specialized extension of the MATLAB computational and
graphical environment.

Signals and Systems
The basic entities that toolbox functions work with are signals and systems.
The functions emphasize digital (or discrete) signals and filters, as opposed to
analog (or continuous) signals. The principal filter type the toolbox supports is
the linear, time-invariant digital filter with a single input and a single output.
You can represent linear time-invariant systems using one of several models
(such as transfer function, state-space, zero-pole-gain, and second-order
section), and you can convert between representations.

1-4

Central Features

Filter Design, Analysis, and Implementation
Signal Processing Toolbox software provides customizable support for filter
design. The major filter design functions included in the toolbox are FIR and
IIR filter design, analysis, and implementation, filter order estimation, and
analog filter prototyping and transformations.

Linear System Transformations
The toolbox has a number of transformation functions, including conversions
to and from second-order sections, state-space, pole-zero, lattice or ladder,
and transfer functions.

Windowing Functions
The toolbox provides many commonly used window functions as well as
graphical user interfaces to view and compare windows and design filters
using these windows.

Spectral Analysis
Toolbox functions are available for estimating the power spectral density,
mean-square spectral estimate, and pseudo spectrum, using parametric and
nonparametric techniques. Some of the spectral analysis methods included
in the toolbox are Burg, covariance, eigenvector, Thomson multitaper,
periodogram, Welch, and Yule-Walker. Other functions are available for
computing the average power of a power spectral density, computing a
one-sided spectrum, and shifting the DC component to the center of a
spectrum.

Transforms
The toolbox includes a variety of transforms and inverse transforms, including
the Fourier, chirp-Z, discrete cosine, Goertzel, Hilbert, and Walsh-Hadamard.

Statistical Signal Processing
The toolbox has functions for computing correlation, cross-correlation,
covariance, and autocorrelation.

1-5

1 Overview

Parametric Modeling
The toolbox includes these methods for autoregressive parametric modeling:
Burg, covariance, Yule-Walker, and Steiglitz-McBride (for ARMA modeling).
The toolbox also has functions for fitting a frequency response to an analog
or discrete-time filter.

Linear Prediction
The toolbox has functions for computing linear prediction coefficients and for
converting between autorcorrelations and prediction polynomials, reflection
coefficients, and line spectral frequencies.

Multirate Signal Processing
The toolbox includes a number of functions for multirate signal processing,
including decimation, up- and downsampling, resampling, and spline
interpolation.

Waveform Generation
The toolbox has functions to generate many types of periodic and aperiodic
waveforms, including chirp, Dirichlet function, Gaussian RF pulse, Gaussian
monopulse, pulse train, rectangle, sawtooth, sinc, square wave, triangle, and
voltage-controlled oscillator. See “Waveform Generation: Time Vectors and
Sinusoids” on page 2-4 for more information.

Other Operations
A number of other operations are also available in the toolbox. Some of these
are cepstral analysis, modulation, demodulation, Slepian sequences, and
various plotting methods.

1-6

Interactive Tools

Interactive Tools
The power of Signal Processing Toolbox software is greatly enhanced by its
easy-to-use interactive tools.

• The Filter Design and Analysis Tool (fdatool) and filterbuilder provide
a comprehensive collection of features for addressing filter design. Both
FDAtool and filterbuilder offer seamless access to the additional filter
design methods, quantization features, C-code generation and other
enhanced filtering features of the Filter Design Toolbox product when
that product is installed. If you have the Filter Design HDL Coder™
product installed, you can also generate HDL code from both FDATool
and filterbuidler.

• The Filter Visualization Tool (fvtool) provides a graphical environment
for viewing, annotating, and printing filter response plots.

• The Signal Processing Tool (sptool) provides a rich graphical environment
for signal viewing, filter design, and spectral analysis.

• The Window Design and Analysis Tool (wintool) provides an environment
for designing and comparing spectral windows.

• The Window Visualization Tool (wvtool) provides a graphical environment
for viewing, annotating, and printing window plots.

1-7

1 Overview

Extensibility

In this section...

“Expanding the Toolbox with M-Files” on page 1-8

“Expanding the Toolbox with Other Toolboxes” on page 1-8

Expanding the Toolbox with M-Files
One of the most important features of the MATLAB environment is that it
is extensible. MATLAB lets you create your own M-files to meet numeric
computation needs for research, design, or engineering of signal processing
systems. Simply copy the M-files provided with the Signal Processing Toolbox
product and modify them as needed, or create new functions to expand the
functionality of the toolbox.

Expanding the Toolbox with Other Toolboxes
A number of other MATLAB products expand and enhance the Signal
Processing Toolbox product. These include:

• Filter Design Toolbox — Toolbox for advanced filter design

• Signal Processing Blockset™ — Product based on Simulink® for creating
and analyzing signal processing models

• Fixed-Point Toolbox — Toolbox for using fixed-point arithmetic

• Filter Design HDL Coder — Toolbox for creating and exporting HDL code

• Embedded IDE Link™ — Toolbox for working with embedded software on
Texas Instruments™ DSPs

1-8

Finding More Information

Finding More Information
This Getting Started guide provides an introduction to Signal Processing
Toolbox software and examples, which give you a quick start at using some
of the commands and graphical user interfaces. It is assumed that you have
basic knowledge and understanding of signals and systems, including such
topics as filter and linear system theory and basic Fourier analysis.

More detailed and advanced information on using the toolbox is available in
the online help system by typing doc at the MATLAB command line or by
viewing the documentation on the MathWorks Web site (www.mathworks.com).
The toolbox also includes a number of introductory and advanced demos
which you can access by typing demos at the MATLAB command line.

1-9

http://www.mathworks.com

1 Overview

1-10

2

Basic Signal Processing
Concepts

• “Representing Signals” on page 2-2

• “Waveform Generation: Time Vectors and Sinusoids” on page 2-4

• “Working with Data” on page 2-12

• “Selected Bibliography” on page 2-14

2 Basic Signal Processing Concepts

Representing Signals

In this section...

“Numeric Arrays” on page 2-2

“Vector Representation” on page 2-2

Numeric Arrays
The central data construct in the MATLAB environment is the numeric
array, an ordered collection of real or complex numeric data with two or more
dimensions. The basic data objects of signal processing (one-dimensional
signals or sequences, multichannel signals, and two-dimensional signals) are
all naturally suited to array representation.

Vector Representation
MATLAB represents ordinary one-dimensional sampled data signals, or
sequences, as vectors. Vectors are 1-by-n or n-by-1 arrays, where n is the
number of samples in the sequence. One way to introduce a sequence is to
enter it as a list of elements at the command prompt. The statement

x = [4 3 7 -9 1];

creates a simple five-element real sequence in a row vector. Transposition
turns the sequence into a column vector

x = x';

resulting in

x =
4
3
7

-9
1

Column orientation is preferable for single channel signals because it extends
naturally to the multichannel case. For multichannel data, each column of a

2-2

Representing Signals

matrix represents one channel. Each row of such a matrix then corresponds
to a sample point. A three-channel signal that consists of x, 2x, and x/π is

y = [x 2*x x/pi]

This results in

y =
4.0000 8.0000 1.2732
3.0000 6.0000 0.9549
7.0000 14.0000 2.2282

-9.0000 -18.0000 -2.8648
1.0000 2.0000 0.3183

If the sequence has complex-valued elements, the transpose operator takes
the conjugate of the sequence elements. To transform a complex-valued row
vector into a column vector without taking conjugates:

x=[1-i 3+i 2+3*i 4-2*i]; %1X4
x=x.'; %4X1

2-3

2 Basic Signal Processing Concepts

Waveform Generation: Time Vectors and Sinusoids

In this section...

“Time Vectors” on page 2-4

“Common Sequences: Unit Impulse, Unit Step, and Unit Ramp” on page 2-5

“Multichannel Signals” on page 2-5

“Common Periodic Waveforms” on page 2-6

“Common Aperiodic Waveforms” on page 2-7

“The pulstran Function” on page 2-8

“The Sinc Function” on page 2-9

“The Dirichlet Function” on page 2-10

Time Vectors
Most toolbox functions require you to begin with a vector representing a
time base. Consider generating data with a 1000 Hz sample frequency, for
example. An appropriate time vector is

t = (0:0.001:1)';

where the MATLAB colon operator creates a 1001-element row vector that
represents time running from 0 to 1 s in steps of 1 ms. The transpose operator
(') changes the row vector into a column; the semicolon (;) tells MATLAB to
compute, but not display the result.

Given t, you can create a sample signal y consisting of two sinusoids, one at
50 Hz and one at 120 Hz with twice the amplitude.

y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

The new variable y, formed from vector t, is also 1001 elements long. You
can add normally distributed white noise to the signal and plot the first 50
points using

randn('state',0);
yn = y + 0.5*randn(size(t));
plot(t(1:50),yn(1:50))

2-4

Waveform Generation: Time Vectors and Sinusoids

Common Sequences: Unit Impulse, Unit Step, and
Unit Ramp
Since MATLAB is a programming language, an endless variety of different
signals is possible. Here are some statements that generate several commonly
used sequences, including the unit impulse, unit step, and unit ramp
functions:

t = (0:0.001:1)';
imp= [1; zeros(99,1)]; % Impulse
unit_step = ones(100,1); % Step (with 0 initial cond.)
ramp_sig= t; % Ramp
quad_sig=t.^2; % Quadratic
sq_wave = square(4*pi*t); % Square wave with period 0.5

All of these sequences are column vectors. The last three inherit their shapes
from t.

Multichannel Signals
Use standard MATLAB array syntax to work with multichannel signals. For
example, a multichannel signal consisting of the last three signals generated
above is

2-5

2 Basic Signal Processing Concepts

z = [ramp_sig quad_sig sq_wave];

You can generate a multichannel unit sample function using the outer product
operator. For example, a six-element column vector whose first element is
one, and whose remaining five elements are zeros, is

a = [1 zeros(1,5)]';

To duplicate column vector a into a matrix without performing any
multiplication, use the MATLAB colon operator and the ones function:

c = a(:,ones(1,3));

Common Periodic Waveforms
The toolbox provides functions for generating widely used periodic waveforms:

• sawtooth generates a sawtooth wave with peaks at ±1 and a period of
. An optional width parameter specifies a fractional multiple of at

which the signal’s maximum occurs.

• square generates a square wave with a period of . An optional parameter
specifies duty cycle, the percent of the period for which the signal is positive.

To generate 1.5 s of a 50 Hz sawtooth wave with a sample rate of 10 kHz and
plot 0.2 s of the generated waveform, use

fs = 10000;
t = 0:1/fs:1.5;
x = sawtooth(2*pi*50*t);
plot(t,x), axis([0 0.2 -1 1])

2-6

Waveform Generation: Time Vectors and Sinusoids

Common Aperiodic Waveforms
The toolbox also provides functions for generating several widely used
aperiodic waveforms:

• gauspuls generates a Gaussian-modulated sinusoidal pulse with a
specified time, center frequency, and fractional bandwidth. Optional
parameters return in-phase and quadrature pulses, the RF signal envelope,
and the cutoff time for the trailing pulse envelope.

• chirp generates a linear, log, or quadratic swept-frequency cosine signal.
An optional parameter specifies alternative sweep methods. An optional
parameter phi allows initial phase to be specified in degrees.

To compute 2 s of a linear chirp signal with a sample rate of 1 kHz, that starts
at DC and crosses 150 Hz at 1 s, use

t = 0:1/1000:2;
y = chirp(t,0,1,150);

To plot the spectrogram, use

spectrogram(y,256,250,256,1000,'yaxis')

2-7

2 Basic Signal Processing Concepts

The pulstran Function
The pulstran function generates pulse trains from either continuous or
sampled prototype pulses. The following example generates a pulse train
consisting of the sum of multiple delayed interpolations of a Gaussian pulse.
The pulse train is defined to have a sample rate of 50 kHz, a pulse train
length of 10 ms, and a pulse repetition rate of 1 kHz; D specifies the delay
to each pulse repetition in column 1 and an optional attenuation for each
repetition in column 2. The pulse train is constructed by passing the name of
the gauspuls function to pulstran, along with additional parameters that
specify a 10 kHz Gaussian pulse with 50% bandwidth:

T = 0:1/50E3:10E-3;
D = [0:1/1E3:10E-3;0.8.^(0:10)]';
Y = pulstran(T,D,'gauspuls',10E3,0.5);
plot(T,Y)

2-8

Waveform Generation: Time Vectors and Sinusoids

The Sinc Function
The sinc function computes the mathematical sinc function for an input
vector or matrix x. The sinc function is the continuous inverse Fourier
transform of the rectangular pulse of width and height 1.

The sinc function has a value of 1 where x is zero, and a value of

for all other elements of x.

To plot the sinc function for a linearly spaced vector with values ranging from
-5 to 5, use the following commands:

x = linspace(-5,5);
y = sinc(x);
plot(x,y)

2-9

2 Basic Signal Processing Concepts

The Dirichlet Function
The toolbox function diric computes the Dirichlet function, sometimes called
the periodic sinc or aliased sinc function, for an input vector or matrix x. The
Dirichlet function is

where n is a user-specified positive integer. For n odd, the Dirichlet function
has a period of ; for n even, its period is . The magnitude of this function
is (1/n) times the magnitude of the discrete-time Fourier transform of the
n-point rectangular window.

To plot the Dirichlet function over the range 0 to 4π for n = 7 and n = 8, use

x = linspace(0,4*pi,300);
plot(x,diric(x,7)); axis tight;
plot(x,diric(x,8)); axis tight;

2-10

Waveform Generation: Time Vectors and Sinusoids

2-11

2 Basic Signal Processing Concepts

Working with Data

In this section...

“Importing Data from Within the MATLAB Environment” on page 2-12

“Importing Data from Outside the MATLAB Environment” on page 2-12

“Converting Data into a MAT-File” on page 2-12

“Exporting Data” on page 2-13

“Data Precision” on page 2-13

Importing Data from Within the MATLAB Environment
The examples in the preceding sections obtain data in one of two ways:

• By direct input, that is, entering the data manually at the keyboard

• By using a MATLAB or toolbox function, such as sin, cos, sawtooth,
square, or sinc

Importing Data from Outside the MATLAB
Environment
Some applications, however, may need to import data from outside MATLAB.
Depending on your data format, you can do this in the following ways:

• Load data from an ASCII file or MAT-file with the MATLAB load
command.

• Read the data into MATLAB with a low-level file I/O function, such as
fopen, fread, and fscanf.

• Develop a MEX-file to read the data.

Converting Data into a MAT-File
Other resources are also useful, such as a high-level language program (in
Fortran or C, for example) that converts your data into MAT-file format.
See the “Manually Converting Data Passed to Functions” documentation for
details. MATLAB reads such files using the load command.

2-12

Working with Data

Exporting Data
Similar techniques are available for exporting data generated within
MATLAB. See the “Importing and Exporting Data” documentation for more
details.

Data Precision
All Signal Processing Toolbox functions accept double-precision inputs. If you
input single-precision floating-point or integer data types, you should not
expect to receive correct results and in many cases, an error will occur. Filter
Design Toolbox and Fixed-Point Toolbox products enable single-precision
floating-point and fixed-point support for most dfilt structures.

2-13

2 Basic Signal Processing Concepts

Selected Bibliography
Algorithm development for Signal Processing Toolbox functions has drawn
heavily upon the references listed below. All are recommended to the
interested reader who needs to know more about signal processing than is
covered in this manual.

[1] Crochiere, R.E., and L.R. Rabiner. Multi-Rate Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1983. pp. 88-91.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York:
John Wiley & Sons, 1979.

[3] Jackson, L.B. Digital Filters and Signal Processing. Third Ed. Boston:
Kluwer Academic Publishers, 1989.

[4] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice
Hall, 1988.

[5] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

[6] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John
Wiley & Sons, 1987.

[7] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques.
Cambridge: Cambridge University Press, 1993.

[8] Pratt,W.K. Digital Image Processing. New York: John Wiley & Sons, 1991.

[9] Proakis, J.G., and D.G. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 1996.

[10] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice Hall, 1975.

[11] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of
Power Spectra: A Method Based on Time Averaging Over Short, Modified

2-14

Selected Bibliography

Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967).
Pgs. 70-73.

2-15

2 Basic Signal Processing Concepts

2-16

3

Filter Design with Fdesign
and Filterbuilder

• “Filter Design Process Overview” on page 3-2

• “Basic Filter Design Process” on page 3-4

• “Using Filterbuilder to Design a Filter” on page 3-9

3 Filter Design with Fdesign and Filterbuilder

Filter Design Process Overview

Note You must have the Signal Processing Toolbox installed to use fdesign
and filterbuilder. Advanced capabilities are available if your installation
additionally includes the Filter Design Toolbox license. You can verify the
presence of both toolboxes by typing ver at the command prompt.

Filter design through user-defined specifications is the core of the fdesign
approach. This specification-centric approach places less emphasis on the
choice of specific filter algorithms, and more emphasis on performance during
the design a good working filter. For example, you can take a given set of
design parameters for the filter, such as a stopband frequency, a passband
frequency, and a stopband attenuation, and— using these parameters—
design a specification object for the filter. You can then implement the filter
using this specification object. Using this approach, it is also possible to
compare different algorithms as applied to a set of specifications.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter

• Implementation Object — Describes the designed filter; includes the array
of coefficients and the filter structure

The distinction between these two objects is at the core of the filter design
methodology. The basic attributes of each of these objects are outlined in the
following table.

Specification Object Implementation Object

High-level specification Filter coefficients

Algorithmic properties Filter structure

You can run the code in the following examples from the Help browser (select
the code, right-click the selection, and choose Evaluate Selection from
the context menu), or you can enter the code on the MATLAB command
line. Before you begin this example, start MATLAB and verify that you
have installed theSignal Processing Toolbox. If you wish to access the full

3-2

Filter Design Process Overview

functionality of fdesign and filterbuilder, you should additionally obtain
the Filter Design Toolbox software. You can verify the presence of these
products by typing ver at the command prompt.

3-3

3 Filter Design with Fdesign and Filterbuilder

Basic Filter Design Process
Use the following two steps to design a simple filter.

1 Create a filter specification object.

2 Design your filter.

Example — Design a Filter in Two Steps

Assume that you want to design a bandpass filter. Typically a bandpass filter
is defined as shown in the following figure.

In this example, a sampling frequency of Fs = 48 kHz is used. This bandpass
filter has the following specifications, specified here using MATLAB code:

A_stop1 = 60; % Attenuation in the first stopband = 60 dB
F_stop1 = 8400; % Edge of the stopband = 8400 Hz
F_pass1 = 10800; % Edge of the passband = 10800 Hz
F_pass2 = 15600; % Closing edge of the passband = 15600 Hz
F_stop2 = 18000; % Edge of the second stopband = 18000 Hz
A_stop2 = 60; % Attenuation in the second stopband = 60 dB
A_pass = 1; % Amount of ripple allowed in the passband = 1 dB

In the following two steps, these specifications are passed to the
fdesign.bandpass method as parameters.

3-4

Basic Filter Design Process

Step 1
To create a filter specification object, evaluate the following code at
the MATLAB prompt:

d = fdesign.bandpass

Now, pass the filter specifications that correspond to the default
Specification— fst1,fp1,fp2,fst2,ast1,ap,ast2. This example adds
fs as the final input argument to specify the sampling frequency of
48 kHz.

>> BandPassSpecObj = ...
fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...

F_stop1, F_pass1, F_pass2, F_stop2, A_stop1, A_pass, ...
A_stop2, 48000)

BandPassSpecObj =

Response: 'Bandpass'
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: false

Fs: 48000
Fstop1: 8400
Fpass1: 10800
Fpass2: 15600
Fstop2: 18000
Astop1: 60
Apass: 1

Astop2: 60

Note The order of the filter is not specified, allowing a degree of
freedom for the algorithm design in order to achieve the specification.
The design will be a minimum order design.

The specification parameters, such as Fstop1, are all given default
values when none are provided. You can change the values of the
specification parameters after the filter specification object has been
created. For example, if there are two values that need to be changed,

3-5

3 Filter Design with Fdesign and Filterbuilder

Fpass2 and Fstop2, use the set command, which takes the object first,
and then the parameter value pairs. Evaluate the following code at
the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 15800, 'Fstop2', 18400)

BandPassSpecObj is the new filter specification object which contains
all the required design parameters, including the filter type.

You may also change parameter values in filter specification objects by
accessing them as if they were elements in a struct array.

>> BandPassSpecObj.Fpass2=15800;

Step 2
Design the filter by using the design command. You can access the
design methods available for you specification object by calling the
designmethods function. For example, in this case, you can execute
the command

>> designmethods(BandPassSpecObj)

Design Methods for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

After choosing a design method use, you can evaluate the following at the
MATLAB prompt (this example assumes you’ve chosen ’equiripple’):

>> BandPassFilt = design(BandPassSpecObj, 'equiripple')

BandPassFilt =

3-6

Basic Filter Design Process

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x44 double]

PersistentMemory: false

Note If you do not specify a design method, a default method will be
used. For example, you can execute the command

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x44 double]

PersistentMemory: false

and a design method will be selected automatically.

To check your work, you can plot the filter magnitude response using the
Filter Visualization tool. Verify that all the design parameters are met:

>> fvtool(BandPassFilt) %plot the filter magnitude response

3-7

3 Filter Design with Fdesign and Filterbuilder

3-8

Using Filterbuilder to Design a Filter

Using Filterbuilder to Design a Filter
Filterbuilder presents the option of designing a filter using a GUI dialog box
as opposed to the command line instructions. You can use Filterbuilder to
design the same bandpass filter designed in the previous section, “Basic Filter
Design Process” on page 3-4

Example — Using Filterbuilder to Design a Simple Filter

To design the filter using FilterBuilder:

1 Type the following at the MATLAB prompt:

filterbuilder

The following dialog box opens:

2 Select Bandpass filter response from the list in the dialog box, and hit the
OK button. The following dialog box opens:

3-9

3 Filter Design with Fdesign and Filterbuilder

3 Enter the correct frequencies for Fpass2 and Fstop2, as shown in the
preceding figure, then click OK. Here the specification uses normalized
frequency, so that the passband and stopband edges are expressed as a
fraction of the Nyquist frequency (in this case, 48/2 kHz). The following
message appears at the MATLAB prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, as shown in the following figure, you see
the object Hbp has been placed on your workspace.

3-10

Using Filterbuilder to Design a Filter

4 To check your work, plot the filter magnitude response using the Filter
Visualization tool. Verify that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

3-11

3 Filter Design with Fdesign and Filterbuilder

3-12

4

Filter Design with the
FDATool GUI

• “Introduction” on page 4-2

• “Designing the Filter” on page 4-3

• “Analyzing the Filter” on page 4-8

• “Designing Additional Filters” on page 4-10

• “Viewing and Annotating the Filter” on page 4-11

• “Exporting Filters from FDATool” on page 4-17

• “Designing Filters using Command Line Functions” on page 4-21

• “Where to Find More Information” on page 4-24

4 Filter Design with the FDATool GUI

Introduction
This section describes how to graphically design and implement digital filters
using the Signal Processing Toolbox FDATool GUI. Filter design is the process
of creating the filter coefficients to meet specific frequency specifications.
Filter implementation involves choosing and applying a particular filter
structure to those coefficients. Only after both design and implementation
have been performed can your data be filtered.

This section includes a brief discussion of applying the completed filter design
and filter implementation using MATLAB command line functions, such as
filter.

For an interactive FDATool demo, type demos at the MATLAB command
line, and select Toolboxes. Expand the tree, scroll down, and select Signal
Processing Toolbox. Under Filter Design and Analysis, click Introduction
to Filter Design and Analysis Tool.

4-2

Designing the Filter

Designing the Filter
This section is a step-by-step introduction to using the Filter Design and
Analysis Tool (FDATool) to design an octave-band filter. An octave is the
interval between two frequencies having a ratio of 2:1. An octave-band
filter is a bandpass filter with high cutoff frequency approximately twice
that of the low cutoff frequency. The class of an octave filter is determined
by its allowable passband ripple and its stopband attenuation. Refer to the
ANSI S1.11–2004 standard for more information. For more information
on designing filters, see “FDATool: A Filter Design and Analysis GUI” in
the Signal Processing Toolbox User’s Guide. (Note that you can also access
FDATool from SPTool).

1 Start FDATool from the MATLAB command line.

fdatool

The FDATool dialog opens with a default filter. Its filter information is
summarized in the upper left (Current Filter Information) and its filter
specifications are depicted in the upper right. In addition to displaying
filter specification, this upper right pane displays filter responses and filter
coefficients.

4-3

4 Filter Design with the FDATool GUI

The bottom half of FDATool shows the Filter Design panel, where you
specify the filter parameters. Other panels, such as Import filter from
workspace and Pole/Zero Editor, which you access with the buttons on
the lower left, are also displayed in this area. If you have other products
installed, you may see additional buttons.

2 In the Response Type pane, select Bandpass.

3 In the Design Method pane, select IIR, and then select Butterworth
from the selection list.

4-4

Designing the Filter

4 For the Filter Order, select Specify order, and then enter 6.

5 Set the Frequency Specifications as follows:

Parameter Setting Description

Units Hz Units for the parameters

Fs 48000 Sampling frequency

Fc1 22 First cutoff frequency (i.e., the
frequency preceding the passband at
which the magnitude response is 3 dB
below the passband gain)

Fc2 45 Second cutoff frequency (i.e., the
frequency following the passband at
which the magnitude response is 3 dB
below the passband gain)

4-5

4 Filter Design with the FDATool GUI

6 After specifying the filter design parameters, click the Design Filter
button at the bottom of the design panel to compute the filter coefficients.
The display updates to show the magnitude response of the designed filter.

Notice that the Design Filter button is disabled after you compute the
coefficients for your filter design. This button is enabled again if you make
any changes to the filter specifications.

7 Click the Store Filter button.

4-6

Designing the Filter

8 In the Store Filter dialog, change the filter name to Bandpass
Butterworth-1 and click OK to save the filter in the Filter Manager.

‘

4-7

4 Filter Design with the FDATool GUI

Analyzing the Filter
After designing the filter, you can view the following filter responses in the
display region by clicking on the associated toolbar button or by selecting the
desired response from the Analysis menu.

Response Toolbar Button Image

Magnitude response

Phase response

Magnitude and Phase responses

Group delay

Phase delay

Impulse response

Step response

Pole-zero plot

Filter coefficients

Filter information

Zero-phase response–only available from
a context menu. Right-click on the y-axis
of a Magnitude or Magnitude and Phase
response plot or select Analysis > Analysis
Parameters.

4-8

Analyzing the Filter

Note Other analyses are available if you have the Filter Design Toolbox
product installed.

1 Examine the displayed magnitude response of the filter.

2 Display other responses, as desired. Click the appropriate buttons, shown
in the table above or select the desired response from the Analysis menu.

3 Click the Filter coefficients button to display the filter coefficients.

4-9

4 Filter Design with the FDATool GUI

Designing Additional Filters
You have designed one of the bands of an octave filter bank. This section
shows you how to design and save the other nine bands. The following table
defines the parameters for the remaining bands. Note that all of the bands
use these parameters: Bandpass, IIR – Butterworth , order = 6, Fs =
48000 Hz .

Fc1 Fc2 Filter Name

45 89 Bandpass Butterworth-2

89 178 Bandpass Butterworth-3

178 355 Bandpass Butterworth-4

355 708 Bandpass Butterworth-5

708 1413 Bandpass Butterworth-6

1413 2818 Bandpass Butterworth-7

2818 5623 Bandpass Butterworth-8

5623 11220 Bandpass Butterworth-9

11220 22387 Bandpass Butterworth-10

1 Using the parameters listed in the table above, for each table row, set the
appropriate the Fc1 and Fc2 values.

2 Design the filter by clicking the Design Filter button.

3 Click Store Filter to save the filter.

4 Change the name to the appropriate filter name shown in the table above.

5 Repeat these steps until all 10 filters are designed and stored.

4-10

Viewing and Annotating the Filter

Viewing and Annotating the Filter

In this section...

“Viewing the Filter in FVTool” on page 4-11

“Using FVTool for Annotation” on page 4-15

Viewing the Filter in FVTool
This section teaches you how to use the Filter Visualization Tool (FVTool) to
view the octave-band filter. It also describes how to annotate your filter.

1 Click the Filter Manager button to display the Filter Manager, which
lists your saved filters.

2 Press Ctrl+click on each filter name to select all the filters, and then
click FVTool. FVTool opens with the filter responses overlaid for easy
comparison. (If you want to view a single filter in FVTool, click the Full

4-11

4 Filter Design with the FDATool GUI

View Analysis button when that filter is shown in the FDATool display
panel or select View > Filter Visualization Tool).

3 Change the x-axis scale to logarithmic by selecting Analysis > Analysis
Parameters to display the Analysis Parameters dialog.

4 Change the Frequency Scale to Log.

5 Click OK.

4-12

Viewing and Annotating the Filter

6 Click the Legend button to turn on the legend, which you can drag to
the desired location.

4-13

4 Filter Design with the FDATool GUI

7 Click the Legend button again to turn off the legend.

Use the Zoom button and drag a rectangle around the first few
passbands to zoom in.

4-14

Viewing and Annotating the Filter

8 Click the Restore Default View button to return to the full view.

9 Display other responses, as desired. (The FVTool Analysis toolbar buttons
and Analysis menu are the same as in FDATool. See “Analyzing the
Filter” on page 4-8 for descriptions of the buttons.

Using FVTool for Annotation
FVTool is also useful for doing further analysis, adding annotations, and
printing. Available annotations include adding rectangles, text boxes, arrows
and lines, and adding data tips.

For a demo about FVTool, type demos at the MATLAB command line,
and select Toolboxes. Expand the tree, scroll down, and select Signal
Processing Toolbox. Under Filter Design and Analysis, click Filter
Analysis using FVTool and its API.

4-15

4 Filter Design with the FDATool GUI

Note Do not close FDATool at this time. You will use it in future sections.

1 Use the toolbar buttons to annotate your response plot. Add a line by
clicking one of the line buttons, and then use your mouse to draw the line
on your plot.

2 Add a data tip by clicking on a plot at the desired point. The data tip shows
the frequency and magnitude at that point.

3 Close FVTool by selecting File > Close.

4-16

Exporting Filters from FDATool

Exporting Filters from FDATool
FDATool provides a simple way to create filter objects (dfilts) from your
filter designs. This is particularly useful for saving your filter design to the
MATLAB workspace for use with command line functions. You can also
save your filters to M-files using File > Generate M-file to run in scripts
or batch files.

1 In FDATool, click Filter Manager and highlight only the Bandpass
Butterworth-1 filter.

2 Select File > Export.

3 Set Export to to Workspace. Set Export as to Objects. In Discrete
Filter type Hd1. Click Export to export the first filter in your filter bank to
an Hd1 dfilt object in the workspace.

4 Repeat steps 1 through 3 for each of the remaining nine filters. Highlight
each filter individually to make it the active filter and change the Discrete
Filter name to match the filter number. When you finish you will have
10 dfilt objects in the workspace.

4-17

4 Filter Design with the FDATool GUI

5 Close FDATool by selecting File > Close.

6 On the MATLAB command line, verify that your objects were exported by
using the whos command.

whos
Name Size Bytes Class Attributes

Hd1 1x1 dfilt.df2sos
Hd10 1x1 dfilt.df2sos
Hd2 1x1 dfilt.df2sos
Hd3 1x1 dfilt.df2sos
Hd4 1x1 dfilt.df2sos
Hd5 1x1 dfilt.df2sos
Hd6 1x1 dfilt.df2sos
Hd7 1x1 dfilt.df2sos
Hd8 1x1 dfilt.df2sos
Hd9 1x1 dfilt.df2sos

Filtering with dfilt
1 Type the following on the MATLAB command line to concatenate your
filter bank filter objects into a single dfilt object.

Hd = [Hd1 Hd2 Hd3 Hd4 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10];

2 To view the first filter, type Hd(1).

Hd(1)

ans =
FilterStructure: 'Direct-Form II, Second-Order Sections'

sosMatrix: [3x6 double]
ScaleValues: [3.40097054256801e-009;1;1;1]

PersistentMemory: false

3 A number of methods can be used to view and manipulate the Hd1 dfilt
object. Try the info command:

info(Hd1) % Displays filter information

Discrete-Time IIR Filter (real)

4-18

Exporting Filters from FDATool

Filter Structure : Direct-Form II, Second-Order Sections
Number of Sections : 3
Stable : Yes
Linear Phase : No

4 You can open FVTool from the MATLAB command line and specify display
parameters as follows.

F = fvtool(Hd,'Analysis','magnitude') % Open FVTool with
% magnitude display

set(F,'FrequencyScale','Log') % Change to log scale

This produces the same display as step 5 of “Viewing the Filter in FVTool”
on page 4-11 above.

5 Now using the MATLAB command line, create some discrete white
Gaussian noise data, which you can then filter using the filter bank.

rand; % Initialize random number generator
Nx = 100000; % Number of noise data points
xw = randn(Nx,1); % Create white noise
for i=1:10,

yw(:,i)=filter(Hd(i),xw); % Filter the white noise through
end % the entire filter bank.

% (:,i) means all rows of column i

Note Do not delete this filtered data. You will use it in the Spectral
Analysis section.

6 Plot the filtered data.

plot(yw)

4-19

4 Filter Design with the FDATool GUI

The next section discusses spectral analysis, where you analyze this data.

4-20

Designing Filters using Command Line Functions

Designing Filters using Command Line Functions
Beginning with R2009a, users can specify and design filters at the command
line using fdesign and design. The use of fdesign and design provides a
powerful and efficient way to specify and implement digital filters. With
fdesign and design, digital filter design is a two-step process. In the first
step, the user specifies the desired characteristics of the filter and saves those
specifications in a Filter Specification Object. In the second step, the user
implements the filter as a dfilt object, which can then be used to filter data.
As an example of this two-step process, we will design a lowpass filter for data
sampled at 20 kHz. The desired passband frequency is 1 kHz with a stopband
frequency of 1.2 kHz. We will limit the passband ripple to 1 dB and require 60
dB of attenuation between the passband and stopband frequencies.

1 To specify the filter use fdesign.lowpasswith the parameters given above.
You can copy and paste the following code at the MATLAB command
prompt.

d=fdesign.lowpass('Fp,Fst,Ap,Ast',1000,1200,1,60,20000);

2 To design the filter use design with the appropriate design methods. In
this example, we create FIR equiripple and IIR Butterworth designs and
compare the filters’ magnitude responses.

Hd1=design(d,'equiripple'); %FIR equiripple design
Hd2=design(d,'butter'); %Butterworth design
Hd=[Hd1 Hd2];%filter object with both designs
%compare filters
fvtool(Hd,'legend','on'); axis([0 2 -70 10])

4-21

4 Filter Design with the FDATool GUI

To determine which filter design methods are available for a given Filter
Specification Object, use designmethods. For the lowpass filter example
above, you have a choice of two FIR and four IIR digital filter designs.:

designmethods(d)
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

4-22

Designing Filters using Command Line Functions

For more detailed information on filter specification and implementation
objects see “Designing a Filter in Fdesign — Process Overview”.

4-23

4 Filter Design with the FDATool GUI

Where to Find More Information
The previous sections described how to use the fundamental features of
FDATool, FVTool, and the fdesign and design commands. For more
advanced information and more complex examples, refer to other sections
of Signal Processing Toolbox online help or Signal Processing Toolbox
documentation available on The MathWorks Web site (www.mathworks.com).

4-24

http://www.mathworks.com

5

Spectral Analysis

• “Introduction” on page 5-2

• “Creating a Spectral Analysis Object” on page 5-4

• “Producing a PSD Estimate” on page 5-6

• “Changing Spectral Analysis Object Property Values” on page 5-8

• “Measuring Signal Power” on page 5-13

• “Where to Find More Information” on page 5-17

5 Spectral Analysis

Introduction

In this section...

“Spectral Analysis Examples” on page 5-2

“Spectral Estimators” on page 5-2

“Spectral Analysis Algorithms” on page 5-2

“Spectral Analysis Objects” on page 5-3

Spectral Analysis Examples
The first example shows you how to compute and display a mean-square
spectrum. The second example shows you how to measure the average power
of a signal.

Spectral Estimators
Spectral analysis includes three types of spectral estimators — power spectral
density (PSD), mean-square spectrum (MSS) and pseudo spectrum.

• Power spectral density (psd) measures power per unit of frequency and
has power/frequency units.

• Mean-square (power) spectrum (msspectrum) measures power at a specific
frequency.

• Pseudospectrum (pseudospectrum) returns a pseudo spectrum that does
not have any units.

Spectral Analysis Algorithms
Signal Processing Toolbox software provides several algorithms to compute
of spectral estimates. The following table indicates which algorithms are
available to compute each type of estimator and produce a spectrum object.
For general information on objects, see Object-Oriented Programming. For
details on spectrum objects, see the spectrum reference page.

5-2

Introduction

Spectral
Estimator

Algorithms

Power spectral
density (psd)

Burg (spectrum.burg),
Covariance (spectrum.cov),
Modified covariance (spectrum.mcov),
Thomson multitaper method (MTM) (spectrum.mtm),
Periodogram (spectrum.periodogram),
Welch (spectrum.welch),
Yule-Walker autoregressive (spectrum.yulear)
See also dspdata.psd

Mean-square
spectrum
(msspectrum)

Periodogram (spectrum.periodogram),
Welch (spectrum.welch)
See also dspdata.msspectrum

Pseudo spectrum
(pseudospectrum)

Eigenvector (spectrum.eigenvector),
MUSIC (Multiple Signal Classification)
(spectrum.music)
See also dspdata.pseudospectrum

Spectral Analysis Objects
Spectral analysis objects contain property values for the particular algorithm.
To calculate a spectrum estimate, you first create an estimator object using
one of the algorithms (h = spectrum.burg). You then pass your data and the
estimator object to a spectrum estimation algorithm (Hpsd = psd(h,x)). In
this example, h is a Burg spectrum object, x is the original input data, and
Hpsd is the resulting PSD estimate.

For more information and examples, see the Getting Started with Spectral
Analysis Objects demo.

5-3

5 Spectral Analysis

Creating a Spectral Analysis Object
In this example, we construct a PSD estimate of a signal using Welch’s
overlapped segment method. To run the example, copy and paste the following
code at the MATLAB command prompt.

Fs=10000; %sampling frequency
t=0:(1/Fs):1; %one second time vector
y=0.4*cos(2*pi*2000*t)+0.2*sin(2*pi*1000*t)+randn(size(t));

Next create a default Welch spectrum object.

h = spectrum.welch;

Entering h at the command prompt shows the default settings for the Welch
spectrum object.

h =

EstimationMethod: 'Welch'
SegmentLength: 64

OverlapPercent: 50
WindowName: 'Hamming'

SamplingFlag: 'symmetric'

If you want to specify parameters instead of using default values, you can
use syntax like the following:

h=spectrum.welch('kaiser',128,50);

The code creates a Welch spectrum object using a Kaiser window (see kaiser).
We have set the segment length equal to 128 with an overlap percentage of
50. The Kaiser window has an additional parameter, beta, which governs
the tradeoff between the width of the main lobe and level of energy in the
sidelobes. Larger values of beta decrease the height of the sidelobes at the
expense of widening the main lobe. You can specify additional parameters
for a chosen window by passing them to the spectrum object in a cell array.
For example,

h=spectrum.welch({'Kaiser',0.2},128,50)
h =

5-4

Creating a Spectral Analysis Object

EstimationMethod: 'Welch'
SegmentLength: 128

OverlapPercent: 50
WindowName: 'Kaiser'

Beta: 0.2000

For additional information on changing the property values of spectrum
objects, see “Changing Spectral Analysis Object Property Values” on page 5-8
for more information.

5-5

5 Spectral Analysis

Producing a PSD Estimate
We now produce a PSD estimate of the signal we created in the previous
section. To generate a PSD estimate, you apply a spectral estimation method
on your spectrum object and data. ,

h = spectrum.welch;
Hpsd=psd(h,y,'Fs',Fs,'ConfLevel',0.95);
plot(Hpsd)

The syntax for using psd, msspectrum, or pseudospectrum is the same. The
first input is the spectrum object (h) and the second input (y) is the signal
(data), followed by any settable properties using property-value pairs ('Fs',

5-6

Producing a PSD Estimate

Fs,'ConfLevel',0.95,’). To set property-value pairs, you list the property
first and then the value for that property.

5-7

5 Spectral Analysis

Changing Spectral Analysis Object Property Values

In this section...

“Using the set command to Set Property Values” on page 5-8

“Using Options Objects to Set Property Values” on page 5-11

Using the set command to Set Property Values
After you have created a spectrum object, you can use the set method or
dot notation to change any of its properties, except theEstimationMethod
property. (Since EstimationMethod is the central property of a particular
spectrum object, you cannot change it.) To change the window from Hamming
(used in the Welch object) to Chebyshev, use dot notation as follows:

h.WindowName = 'Chebyshev'

h =
EstimationMethod: 'Welch'

SegmentLength: 66
OverlapPercent: 50

WindowName: 'Chebyshev'
SidelobeAtten: 100

or use the set method,

set(h,'WindowName','Chebyshev')

Chebyshev windows have a sidelobe attenuation parameter that automatically
appears in the list of properties. To change a window parameter, you use a
cell array containing the window name and parameter value, such as,

h = spectrum.welch({'Chebyshev',80})

h =
EstimationMethod: 'Welch'

SegmentLength: 64
OverlapPercent: 50

WindowName: 'Chebyshev'
SidelobeAtten: 80

5-8

Changing Spectral Analysis Object Property Values

To see a list of all available window functions for the Welch spectral analysis
object, enter the following at the MATLAB command prompt:

set(h,'windowname')
ans =

'Bartlett'
'Bartlett-Hanning'
'Blackman'
'Blackman-Harris'
'Bohman'
'Chebyshev'
'Flat Top'
'Gaussian'
'Hamming'
'Hann'
'Kaiser'
'Nuttall'
'Parzen'
'Rectangular'
'Taylor'
'Triangular'
'Tukey'
'User Defined'

The Signal Processing Toolbox provides the most common window functions
used in nonparametric spectral analysis. However, you also have the
flexibility to use a user-defined window function as the next section
demonstrates.

Using a User-Defined Window
This section demonstrates how to construct a Welch PSD estimate with
a user-defined window, a discrete prolate spheroidal sequence (see dpss).
First, construct a Welch spectral analysis object with a user-defined window
function using the following code:

h=spectrum.welch('user defined')

h =

5-9

5 Spectral Analysis

EstimationMethod: 'Welch'
SegmentLength: 64

OverlapPercent: 50
WindowName: 'User Defined'

MATLABExpression: ''
Parameters: []

To specify a discrete prolate spheroidal sequence as the window function, set
the MATLABExpression property to 'dpss'. You use the syntax dpss(N,NW,1)
to construct the window function. N is the SegmentLength property, NW
represents the time half bandwidth product, and the scalar 1 indicates use of
only the first discrete prolate spheroidal sequence.

set(h,'matlabexpression','dpss')

h =

EstimationMethod: 'Welch'
SegmentLength: 64

OverlapPercent: 50
WindowName: 'User Defined'

MATLABExpression: 'dpss'
Parameters: []

Finally, use the Parameters property to supply required or optional input
arguments for the window function defined by MATLABExpression. This
example uses a time half bandwidth product of 2.5. You specify the length by
the SegmentLength property. Because you are not constructing a multitaper
spectral estimate, you use only the first discrete prolate spheroidal sequence.

set(h,'parameters',{2.5,1})
h

h =

EstimationMethod: 'Welch'
SegmentLength: 64

OverlapPercent: 50
WindowName: 'User Defined'

MATLABExpression: 'dpss'
Parameters: {[2.5000] [1]}

5-10

Changing Spectral Analysis Object Property Values

MATLAB evaluates the user-defined window as dpss(64,2.5,1).

The following MATLAB code obtains the Welch PSD estimate of a signal with
a user-defined window. Use the first discrete prolate spheroidal sequence of
length 128 and a time half bandwidth product of 2.5 as the window function

Fs=10000; %sampling frequency
t=0:(1/Fs):1; %one second time vector
y=0.4*cos(2*pi*2000*t)+0.4*sin(2*pi*1000*t)+randn(size(t));
h=spectrum.welch('user defined');
set(h,'matlabexpression','dpss',...
'parameters',{2.5,1},'segmentlength',128);
Hs=psd(h,y,'Fs',Fs);
plot(Hs);

Using Options Objects to Set Property Values
Another way to set properties for a particular estimation method is to use the
options object associated with that method. For example, use the following
syntax to create an options object from the spectrum object for use with the
mean-square spectrum:

Hopts = msspectrumopts(h) % Create options object

5-11

5 Spectral Analysis

Hopts =
NFFT: 'Nextpow2'

NormalizedFrequency: true
Fs: 'Normalized'

SpectrumType: 'Onesided'
CenterDC: false

You can change any of the options properties using set, followed by the
options object and property-value pairs, such as

set(Hopts,'Fs',48000)

To pass the options object to the first msspectrum in the filtered data, use

msspectrum(h,yw(:,1),Hopts)

Options objects that correspond to psd and pseudospectrum are psdopts and
pseudospectrumopts, respectively.

5-12

Measuring Signal Power

Measuring Signal Power
This section shows you how to measure the average power of a deterministic
periodic signal. This type of signal is continuous in time, but produces a
discrete power spectrum. A signal made up of sinusoids is an example of
a power signal that has infinite energy, but finite average power . The
example shows how to estimate the average power of a sinewave with a
peak amplitude of 1.

First, you measure the average power using a periodogram spectrum object,
and then calculate and plot the mean-square (power) spectrum.

Fs = 1024; % Sampling frequency
t = 0:1/Fs:1-(1/Fs); % Time vector
A = 1; % Peak amplitude
F1 = 128; % Hz
x = A*sin(2*pi*t*F1); % Sinusoidal signal

hp = spectrum.periodogram('hamming'); % Create periodogram

% Create options object and set properties
hpopts = psdopts(hp,x);
set(hpopts,'Fs',Fs,'SpectrumType','twosided','centerdc',true);

msspectrum(hp,x,hpopts);
v = axis; axis([v(1) v(2) -10 -5.5]); % Zoom in Y.

5-13

5 Spectral Analysis

The average power of each complex sinusoid is approximately -6 dB.

To calculate the average power by "integrating" under the power spectral
density (PSD) curve, you use the psd method on the spectrum object (hp) ,
and then use the avgpower method.

hpsd = psd(hp,x,hpopts);
plot(hpsd);

5-14

Measuring Signal Power

Notice that the peaks of this plot are not the same height as the mean-square
spectrum peaks. The area under the PSD curve is the measure of the average
power, not the peak heights. By using the avgpower method and converting
the result to dB, you can see that the average power is the same for both
of them.

power_freqdomain = avgpower(hpsd)

power_freqdomain =

0.5000

According to Parseval’s theorem, the total average power in a sinusoid is the
same, whether you compute the power in the time or frequency domain. You

5-15

5 Spectral Analysis

can verify the estimated average power by summing the signal in the time
domain.

power_timedomain = sum(abs(x).^2)/length(x)

power_timedomain =

0.5000

Converting this linear value to a logarithmic value, you see that the average
power is the same as shown in the mean-square spectrum plot.

10*log10(power_freqdomain/2)

ans =

-6.0206

5-16

Where to Find More Information

Where to Find More Information
The previous sections described how to use the fundamental features of
spectral analysis. For more advanced information and examples, refer to
theSignal Processing Toolbox online help available on The MathWorks Web
site (www.mathworks.com).

5-17

http://www.mathworks.com

5 Spectral Analysis

5-18

Index

IndexA
aliasing

sinc functions 2-10
analog signals. See signals
annotation 4-15
ASCII files

importing 2-12
average power 5-13

B
bandpass filters 4-3
buttons

filter analysis 4-8

C
cell array 5-8
chirp signals 2-7
continuous signals. See signals
cycles

duty 2-6

D
data

importing 2-12
matrices 2-2
multichannel matrix 2-2
multichannel signals 2-6
supported types 1-3
time vectors 2-4
vectors 2-2

demos 1-9
FDATool 4-2
FVTool 4-15
spectral analysis 5-3

design a filter 3-4
filterbuilder 3-9

dfilt 4-18

digital signals 1-4
Dirichlet functions

definition 2-10
dot notation 5-8
double-precision inputs 1-3
duty cycles 2-6

E
export 4-17
extensibility 1-8

F
fdatool GUI

analysis buttons 4-8
group delay 4-8
impulse response 4-8
magnitude response 4-8
phase delay 4-8
phase response 4-8
pole-zero plots 4-8
step response 4-8

files
M 2-12
MAT 2-12
MEX 2-12

filter coefficients
icon 4-8

filter information
icon 4-8

filterbuilder 3-9
filters

linear time-invariant digital 1-4
octave-band 4-3

fopen function 2-12
fread function 2-12
functions

Dirichlet 2-10
sinc 2-9

Index-1

Index

G
gauspuls function

pulse trains 2-8
getting started 3-2
getting started example 3-2
graphical user interface (GUI) 1-7

See also sptool GUI, fdatool GUI, wintool
GUI, fvtool GUI, wvtool GUI

group delay
icon 4-8

I
import

data 2-12
impulse 2-5
impulse response

icon 4-8
inverse Fourier transforms

See sinc function 2-9

M
M-files

expanding a toolbox 1-8
magnitude and phase response

icon 4-8
magnitude response

icon 4-8
MAT-files

converting to 2-12
importing 2-12

matrices
data 2-3

matrix 2-2
MEX-files 2-12
multichannel data 2-6

N
noise data 4-19

O
octave-band filters 4-3
options object 5-11

P
P-V pairs 5-7
periodogram 5-13
phase delay

icon 4-8
phase response

icon 4-8
pole-zero plot

icon 4-8
power spectral density 5-2
power spectrum 5-2
property values

changing 5-8
property-value pairs 5-7
pulse trains

example 2-8
pulstran function 2-8

R
ramp 2-5
references

DSP 2-14

S
sawtooth function

example 2-6
sawtooth wave 2-6
set 5-8
signal

average power 5-13

Index-2

Index

signals
adding noise 2-4
aperiodic 2-7
chirp 2-7
continuous (analog) 1-4
diric function 2-10
discrete (digital) 1-4
generating 2-5
multichannel 2-6
periodic 2-6
plotting 2-4
pulstran function 2-8
representing 2-2
sawtooth 2-6
sinc 2-9
sinusoidal 2-4
square wave 2-6

single-precision inputs 1-3
spectrum

creating 5-6
mean-square spectrum 5-2
options object 5-11
PSD 5-2
pseudo spectrum 5-2

sptool GUI
data entering 2-12

square function
example 2-6

square wave
See square function 2-6

step 2-5

step response
icon 4-8

T
time vectors 2-4
toolbox

getting started 3-2
tools

interactive GUIs 1-7

U
unit impulse function 2-5
unit ramp function 2-5
unit sample multichannel 2-6
unit step function 2-5

V
vectors

data representation 2-2
waveform generation 2-4

W
waveforms. See signals
white noise 2-4

Z
zero-phase response 4-8

Index-3

	toc
	Overview
	Product Overview
	Product Summary
	Command-Line Functions and Objects
	Graphical User Interfaces
	Supported Data Types

	Central Features
	Signal Processing Toolbox Functions
	Signals and Systems
	Filter Design, Analysis, and Implementation
	Linear System Transformations
	Windowing Functions
	Spectral Analysis
	Transforms
	Statistical Signal Processing
	Parametric Modeling
	Linear Prediction
	Multirate Signal Processing
	Waveform Generation
	Other Operations

	Interactive Tools
	Extensibility
	Expanding the Toolbox with M-Files
	Expanding the Toolbox with Other Toolboxes

	Finding More Information

	Basic Signal Processing Concepts
	Representing Signals
	Numeric Arrays
	Vector Representation

	Waveform Generation: Time Vectors and Sinusoids
	Time Vectors
	Common Sequences: Unit Impulse, Unit Step, and Unit Ramp
	Multichannel Signals
	Common Periodic Waveforms
	Common Aperiodic Waveforms
	The pulstran Function
	The Sinc Function
	The Dirichlet Function

	Working with Data
	Importing Data from Within the MATLAB Environment
	Importing Data from Outside the MATLAB Environment
	Converting Data into a MAT-File
	Exporting Data
	Data Precision

	Selected Bibliography

	Filter Design with Fdesign and Filterbuilder
	Filter Design Process Overview
	Basic Filter Design Process
	Example — Design a Filter in Two Steps
	Using Filterbuilder to Design a Filter
	Example — Using Filterbuilder to Design a Simple Filter

	Filter Design with the FDATool GUI
	Introduction
	Designing the Filter
	Analyzing the Filter
	Designing Additional Filters
	Viewing and Annotating the Filter
	Viewing the Filter in FVTool
	Using FVTool for Annotation

	Exporting Filters from FDATool
	Filtering with dfilt

	Designing Filters using Command Line Functions
	Where to Find More Information

	Spectral Analysis
	Introduction
	Spectral Analysis Examples
	Spectral Estimators
	Spectral Analysis Algorithms
	Spectral Analysis Objects

	Creating a Spectral Analysis Object
	Producing a PSD Estimate
	Changing Spectral Analysis Object Property Values
	Using the set command to Set Property Values
	Using a User-Defined Window

	Using Options Objects to Set Property Values

	Measuring Signal Power
	Where to Find More Information

	Index

